単 位 数 | 学年配当 | 開講期間 | 担 当 教 員 |
2 | 3 | 前期 | 大 場 和 久 |
人工知能の基礎理論について学ぶ。 また、 人工知能の応用分野の一つである遺伝アルゴリズムを用いた最適化手法について簡単なプログラミング、 数値実験を行なうことで遺伝アルゴリズムの動作を知る。 |
第 1 週 人工知能の概要 第 2 〜 3 週 人工知能の基礎 知能表現と述語論理、 知識の学習 第 4 〜 6 週 エキスパートシステム、 ファジイ理論、 ニューラルネットワーク 第 7 〜 8 週 遺伝アルゴリズムの理論 第 9 〜12 週 遺伝アルゴリズムを用いた例題 (プログラミング) 第 13 週 まとめ |
例題として人工知能のプログラミングを行うので、 Basic, C などのプログラミング言語をひととおり習得していること。 プログラミングの基礎的な事項については説明しないので、 各自、 しっかりと復習しておくこと。 2 進数、 論理演算についても理解できていることが望ましい。 他の受講生の迷惑になる行為 (私語、 講義中に席を離れるなど) は厳禁。 |
成績評価は課題提出状況、 試験を総合して評価する。 |
(C) Copyright 2003 Nihon Fukushi University. all rights reserved. |
本ホームページからの転載を禁じます。 |
|
 |